# Comparative Toxicity of Gasoline Oxygenates

by

Heriberto Robles, Ph.D., D.A.B.T.
and

Teri L. Copeland, M.S., D.A.B.T.

**September 25, 2002** 



- Brief History
- > Environmental Benefits
- MTBE Phased Out of CA
- Comparative Toxicity
- Alternatives

# CAAA (1990) Mandates

- ✓ 1992: Gasoline with 2.7% O<sub>2</sub> nonattainment areas
- ✓ EtOH, MeOH, MTBE, ETBE, TAME, DIPE, TBA
- ✓ MTBE preferred option

# Air Quality Benefits in CA

- ✓ = Removing 3.5 million (old) cars
- √ 1,300 tons CO/day; 20 tons benzene/day
- √ U Tailpipe emissions of air toxics
- ✓ U Cancer risk by 40% or 60/million

# Air Quality Benefits (cont.)

- ✓ South Coast Air Basin
  - Ozone levels
     U 18% in 1996 vs. 94-95
- √ Sacramento
  - Ozone **∪** 12%
- √ Southern California
  - Ozone ∪ 10%

### **MTBE** in Groundwater

### Santa Monica (4/1996)

- > 3 municipal drinking water wells
- > Suspected LUSTs
- > MTBE at 590 ug/L

### MTBE Phased Out of California

- "There is a significant risk to the environment from using MTBE in gasoline in California"
- CARB to lower or remove O<sub>2</sub> content requirement
- Evaluate ethanol as an alternative

# **Gasoline Oxygenates**

EtOH, MeOH, MTBE, ETBE, TAME, DIPE, TBA

TAEE, THXME, THPME, THXEE, THPEE, DME, etc.

### **Alternatives Must:**

- ✓ Attain air quality benefits
- ✓ Less mobile and persistant in subsoil
- ✓ Have an extensive toxicological database
- ✓ Less toxic than MTBE, and
- ✓ Have less offensive odor

# **Water Solubility**

MTBE 5.0 g/100 ml

**EtOH** Miscible

MeOH Miscible

TBA Miscible

ETBE <0.1g/100 ml

**TAME** No information

DIPE 0.88 g/100 ml

# Biodegradation

MTBE Resistant to degradation

**EtOH** Biodegradable (urethane?)

MeOH Formic acid

TBA Biodegradable

**ETBE** No information

**TAME** No information

**DIPE** Resistant

### Half-life in Water

MTBE 4 hours to 4 days

EtOH 6 days

MeOH 5 to 52 days

**TBA** 2.2 to 129 days

**ETBE** No information

**TAME** No information

DIPE 3 hours to 4 days

### Half-life in Air

MTBE 5.5 to 50 days

**EtOH** Hours to 6 days

MeOH 18 days

TBA 14.7 days

**ETBE** No information

**TAME** No information

DIPE 21 hours

### Odor

MTBE Sharp, ether-like

**EtOH** Pleasant alcoholic

MeOH Pleasant alcoholic

TBA Camphor-like

**ETBE** No information

**TAME** No information

DIPE Pungent, ether-like

## **Comparative Toxicity**

### Why?

- Risk = Exposure x Toxicity
- Maximum Air Benefits
- Minimum Environmental and Health Risks
- Risk Assessment of Past Releases
- Maximize Existing (Incomplete) Databases

# **Toxicity Assessment**

- Dose-Response
- Systemic Toxicity / Neurotoxicity
- Reproductive/ Developmental Toxicity
- Carcinogenicity
- Metabolism

# **MTBE Toxicity**

- √ Target organs: kidney and liver
- √ Toxic doses 

  ⇒ tumors
  - Chronic cell damage
  - No cancer at tolerable doses
  - Studies had technical limitations
  - Cancers seen are rodent specific
  - MTBE not genotoxic
- ✓ Not a human carcinogen (IARC, 1998)

### **Carcinogenicity Bioassays:**

| MTBE                           |                       |                  |                     |  |
|--------------------------------|-----------------------|------------------|---------------------|--|
| Chun et al,<br>1992            | F-344 rat             | Inhalation       | 400, 3000, 8000 ppm |  |
| Belpoggi et al,<br>1995        | Sprague<br>Dawley rat | Oral (oil)       | 250, 1000 mg/kg     |  |
| Burleigh-Flayer<br>et al, 1992 | CD-1 mouse            | Inhalation       | 400, 3000, 8000 ppm |  |
| Bird et al, 1997               | F-344 rat             | Inhalation       | 400, 3000, 8000 ppm |  |
|                                | CD-1 mouse            |                  |                     |  |
| TBA                            |                       |                  |                     |  |
| Cirvelli et al,<br>1995        | F-344 rat             | Oral<br>Drinking | 1,25, 2.5, 5 mg/L   |  |
|                                | B6C3F                 | Water            | 5,10,20 mg/L        |  |
|                                | mouse                 |                  |                     |  |

### Carcinogenicity: Liver

### TBA (Oral, rat & mouse)

None up to 5 mg/L

#### **MTBE**

- Female Mice Only (inhalation only)
- > MTD (8,000 ppm), Weak Response
- Tumor 20 to Toxic Response
- Increase in Cell Division, Classic Mechanism (sand, alcohol)
- Consensus (incl. CalEPA) not Relevant to Humans

### **Example: Respirable Silica**

Response



**Exposure (Dose and Duration)** 

### **Example: MTBE**



# Carcinogenicity: Thyroid

### TBA (Oral, rat & mouse)

Mouse - > MTD (20 mg/L)

#### MTBE (mouse)

- > MTD (8,000 ppm), Weak Response
- \*Tumor 20 to Toxic Response
- \*Increase in Cell Division, Classic Mechanism (alcohol, phenobarbitol)
- \*Consensus (incl. CalEPA) not Relevant to Humans

# Carcinogenicity: Lymphomas and Leukemias

### TBA (Oral, rat & mouse)

None up to 5 mg/L

#### **MTBE**

- Female Rat Only (oral gavage only)
- > MTD Only
- Statistically Significant Only if Summed
- Generally Inappropriate to Sum (NTP, 1986)
- Summed Data Used by CalEPA as basis for CPF/PHG

# Carcinogenicity: Testicular Tumors

### TBA (Oral, rat & mouse)

None up to 5 mg/L

#### <u>MTBE</u>

- Male Rat Only (inhalation, oral gavage)
- MTD (8000 ppm) Only, Weak Response
- High Background Rate in Lab Rodents
- Decreased Survival in Study Controls
- Not Significant With NTP Control Data
- Used as Basis for CalEPA CPF/PHG

# Carcinogenicity: Kidney Tumors

### TBA (Oral, rat & mouse)

Rat – Weak Response at High Dose (5 mg/L)

### **MTBE**

- Male Rat Only (inhalation only)
- Weak Response at 3,000 and 8,000 ppm (lethal doses)
- USEPA, IARC, HEI, NRC Tumors Not Relevant to Humans
- CalEPA disagrees
- Study used as basis for CalEPA CPF/PHG

### MTBE - Weight-of-Evidence for Cancer

- Carcinogenic Potential for Humans is Very Low
- No Epidemiological Evidence of Cancer
- Rodent Tumors Elevated Only at Doses >> MTD
- Rodent Tumors Only After Chronic Progressive Cytotox
- Not Genotoxic (threshold)
- > Tumor Mechanisms Species-Specific
- Human Health Risk Additionally Deemed Low Based on Offensive Odor at Low Levels
- USEPA, IARC, WHO, ATSDR Classify as Animal Carcinogen
- CalEPA Classifies as Carcinogen (not listed by Prop 65)

# **Ethyl Alcohol (EtOH)**

- ✓ Most studied chemical
- ✓ CNS, liver, kidney, cardiovascular, gastrointestinal, endocrine
- ✓ Teratogen, co-carcinogen, reproductive toxicant
- ✓ No health risks expected when mixed with gasoline

# Methyl Alcohol (MeOH)

- ✓ Widely studied due to intentional, accidental and occupational exposure
- ✓ CNS, metabolic acidosis, eyes, male reproductive organs
- ✓ Teratogen and fetotoxic
- ✓ Limited info. on low-level, chronic exposure

# tertiary-Butyl Alcohol (TBA)

- √ 2 to 5 times more toxic than EtOH
- ✓ Kidney effects similar to MTBE
- ✓ CNS, liver, kidney and cardiac damage
- ✓ Not classifiable as a human carcinogen

# **Ethyl tert-Butyl Ether (ETBE)**

✓ Very limited information

✓ Structurally not likely to be genotoxic and carcinogen

# Diisopropyl ether (DIPE)

- $\sqrt{11}l_2$  2 times more toxic than ethyl ether
- ✓ CNS depression, anesthesia, death
- ✓ Few injuries and death from industrial exposure
- ✓ May produce liver and brain damage (chronic)
- ✓ May be teratogenic

# tert-Amyl Methyl Ether (TAME)

- ✓ Limited information
- ✓ More severe CNS depression than that resulting from MTBE exposure
- ✓ May be teratogen and mutagen

### **Conclusions**

- Benefits outweigh risks (?)
- MTBE best oxygenate (?)
- MeOH second best (?)
- Increased control of soil and groundwater releases
- Risk-based cleanup programs

### **Regulatory Criteria**

| MTBE:                                        | CalEPA                        | USEPA                     | ATSDR                                |
|----------------------------------------------|-------------------------------|---------------------------|--------------------------------------|
| Acceptable Dose (mg/kg-d)                    | 2.29                          | 0.857                     | Acute: 0.4<br>Intermed. 0.3          |
| Acceptable Air<br>Concentration              | 0.001 ppm<br>(ca, air PRG IX) | 0.869 ppm<br>(air PRG IX) | Acute: 2 ppm<br>Int/Chronic: 0.7 ppm |
| Cancer Slope Factor (mg/kg-d) -1             | 0.0018                        | none                      | none                                 |
| Public Health<br>Goal (H20)                  | 13 ppb (ug/L)                 | NA                        | NA                                   |
| Primary MCL                                  | none                          | none                      | NA                                   |
| Secondary MCL                                | 5 ppb<br>(odor/taste)         | none                      | NA                                   |
| USEPA Drinking Water Advisory                |                               | 20-40 ppb<br>(odor/taste) |                                      |
| DHS Interim Action<br>Level                  | 35 ppb (odor)                 |                           |                                      |
| DHS Proposed New Limit (regulation)          | 5 ppb (odor,<br>taste)        |                           |                                      |
| TBA: Michigan 550 ppb Drink. water guideline |                               |                           |                                      |